beta
Povezani zapisi:

Podaci zapisa nisu dostupni
 
1 (1-10)
NaslovA note on the exponential Diophantine equation (A 2n) x+(B 2n) y=((A 2+B 2)n) z / Maohua Le, Gökhan Soydan.
Način izrade datotekeizvorno digitalna građa
Vrstačlanak
OpisLet A, B be positive integers such that min{A,B}>1, gcd(A,B) = 1 and 2|B. In this paper, using an upper bound for solutions of ternary purely exponential Diophantine equations due to R. Scott and R. Styer, we prove that, for any positive integer n, if A >B3/8, then the equation (A2 n)x + (B2 n)y = ((A2 + B2)n)z has no positive integer solutions (x,y,z) with x >z >y; if B>A3/6, then it has no solutions (x,y,z) with y>z>x. Thus, combining the above conclusion with some existing results, we can deduce that, for any positive integer n, if B ≡ 2 (mod 4) and A >B3/8, then this equation has only the positive integer solution (x,y,z)=(1,1,1).
rrep
1
1 (1-10)