beta
Povezani zapisi:

Podaci zapisa nisu dostupni
 
1 (1-10)
NaslovExtension of the functional independence of the Riemann zeta-function / Antanas Laurinčikas.
Način izrade datotekeizvorno digitalna građa
Vrstačlanak
OpisIn 1972, Voronin proved the functional independence of the Riemann zeta-function ζ(s), i. e., if the functions φj are continuous in ℂN and φ0(ζ(s), …, ζ(N-1)(s))+ ∙∙∙ + sn φn(ζ(s), …, ζ(N-1)(s)) ≡ 0, then φj≡ 0 for j=0,…, n. The problem goes back to Hilbert who obtained the algebraic-differential independence of ζ(s). In the paper, the functional independence of compositions F(ζ(s)) for some classes of operators F in the space of analytic functions is proved. For example, as a particular case, the functional independence of the function cosζ(s) follows.
rrep
1
1 (1-10)